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Symmetries and invariant solutions of the planar paraxial wave equation in photosensitive media
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We study the equations describing planar self-written waveguides through group theoretical methods. We
show the equations are nonintegrable through Painleve´ analysis. Using Lie group analysis we construct a class
of exact solutions for this problem. We also show the previously reported modal ansatz solutions can be
recovered from our present results as a special case.
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I. INTRODUCTION

The formation of a self-written waveguide is an examp
of a self-action effect in which light, propagating through
photosensitive medium, is confined by the waveguide tha
generates. This effect is general and requires a medium
which the refractive index increases permanently with
cumulative fluence of light. Examples of media in whic
self-writing has been observed include photosensitive gla
@1,2#, electro-optic crystals@3# in planar geometries, photo
resist @4,5#, photopolymerizable resin@6#, UV-cured epoxy
@7#, and silica glass@8# in bulk. Similar effects are also ob
served in photorefractive materials@9#.

A self-writing effect that has been thoroughly studied
that in the planar photosensitive glass geometry. In this
related work it was found that the experimental results
consistent with a local model for the photosensitivity
which the refractive index change at some position only
pends on the integrated fluence at that position. The ac
relationship between these was found to be well describe
@10#

]Dn

]t
5AuEu2pS 12

Dn

Dns
D , ~1!

whereE is the electric field amplitude,Dn is the refractive
index change,Dns is a saturation value for the refractiv
index change, andA is a constant describing the strength
the photosensitivity. For one-photon processes we havp
51, while for two-photon processesp52. The constantA
was found to have a small imaginary part, corresponding
self-induced increase in the losses@10#. Both this effect and
the saturation are only relevant at the late stages
waveguides’ evolution; during the initial stages both effe
may be neglected. To obtain a complete description of
self-writing process, we require the paraxial wave equati

i
]E
]z

1
1

2k

]2E
]y2 1k0

Dn

n0
E50, ~2!

which describes light propagation in the evolving plan
structure. Herez is the propagation direction,y is the trans-
verse direction,k is the wave number,E is the electric field
amplitude, andDn/n0 is the relative change in the initia
refractive indexn0 .
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Apart from fully numerical approaches, insight into th
solutions of the nonlinear partial differential equatio
~PDEs! ~1! and ~2! has been obtained by a Taylor seri
method, usingz as the small parameter@11#, and an approach
based on self-similar solutions@12#, neither of which has
lead to analytical solutions. The aim of the present work is to
find such solutions. To do this, we use the method of
groups, one of the powerful tools available to solve nonlin
PDEs, and which can be used to derive a large class of
cial solutions. The exact solutions that arise from symme
methods can often be used effectively to study proper
such as asymptotics and divergences.

In this work we consider the planar geometry at the ea
stages of the waveguide evolution, consistent with the
sumptions in an earlier work@12#. We investigate both the
one-photon case@p51 in Eq. ~1!# with the results given in
the main text, and the two-photon case@p52 in Eq. ~1!#,
with the results given in the Appendix.

To apply our analysis we first write Eq.~1! in dimension-
less form. To do this we introduceT, Z, Y, N, andE to be the
dimensionless equivalents of the physical quantitiest, z, y,
Dn, and E, respectively, defined byT5a2k0

2n0At(E0E0* )p,
Y5y/a, Z5z/(k0n0a2), N5a2k0

2n0Dn, andE5E/E0 . Here
a is a measure of the beam width, andE0 is the typical large
electric field amplitude. Since we consider the early evo
tion we may ignoreDns and takeA to be real@see Eq.~1!#.
The normalized equations are thus

iEZ1
1

2
EYY1NE50,

NT2uEu2p50. ~3!

To study the invariance and integrability properties
Eqs. ~3!, we introduce the transformation to the real fun
tions corresponding to amplitude and phase

E5R~Y,Z,T!eiF~Y,Z,T!, ~4!

so that they can be written as

RZ1RYFY1
1

2
RFYY50,

RYY22RFZ2RFY
212RN50,
©2002 The American Physical Society07-1



er
e

on
y
r

th

la
ol
re
t

. V

a
e

in

c-
in

bl
te
le

ai
x
ov

i
ol
-

t

ar
tu

w

c-

om-
tra-

Let
ns-

f

nd

al
n-
ua-

SENTHILVELAN, POLADIAN, AND MARTIJN de STERKE PHYSICAL REVIEW E65 066607
NT2R2p50, ~5!

the set of equations used throughout the rest of the pap
The structure of the paper is as follows. In Sec. II, w

apply Painleve´ analysis to the planar paraxial wave equati
~5! with p51. In Sec. III, we present the Lie symmetr
analysis for Eqs.~5!. We perform the invariance analysis fo
the (111)-dimensional system of PDEs and construct
resulting ordinary differential equations~ODEs! in Sec. IV.
As the general ODE is nonintegrable we consider a subc
of symmetries and construct three different classes of s
tions in Sec. V. In Sec. VI, we show the earlier results
ported in the literature@12# can be derived from our presen
studies as a subcase. We present our conclusions in Sec
Finally, we discuss briefly the results forp52 in Eqs.~5! in
the Appendix.

II. PAINLEVE´ ANALYSIS

Here we apply Painleve´ analysis to the PDEs~5! with p
51. Note that all references to these equations in the m
text implicitly refer to this case only; in the Appendix w
consider the case withp52. Recall that the Painleve´ test is a
necessary condition for the integrability of the given nonl
ear PDE@13#. As originally formulated by Ablowitzet al.
@14#, the Painleve´ conjecture asserts that all similarity redu
tions of a completely integrable PDE should have the Pa
levéproperty, that is, their solutions should have no mova
singularities other than poles in the complex plane. A la
version of the Painleve´ test, the Weiss-Tabor-Carneva
~WTC! algorithm due to Weisset al. @15,13#, allows testing
the PDEs directly, without recourse to ODEs. A PDE is s
to have the Painleve´ property if its solutions in the comple
plane are single valued in the neighborhood of all its m
able singularities.

As a first step we now effect a local Laurent expansion
the neighborhood of a noncharacteristic singular manif
f(Y,Z,T)50, (fY ,fZ ,fTÞ0). Assuming the leading or
ders of the solutions of Eqs.~5! have the form

R;a0fq, F;b0f r , N;N0fp, ~6!

and substituting Eq.~6! into Eqs.~5! and balancing dominan
terms, one obtainsq523/2, r 51, p522 with the leading-
order coefficientsa0

2515/4,b0521, N05215/8.
The next step is to find the powers at which the arbitr

functions can enter into the Laurent series. Let us substi
the expression

R5a0f23/21ajf
@ j 2~3/2!#, F5b0f1bjf

~ j 11!,

N5N0f221Njf
~ j 22!, ~7!

into Eqs.~5! and considering leading-order terms alone,
obtain the set of equations
06660
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S 0 ~ j 11!~ j 23!~a0/2! 0

j ~ j 24! 0 2a0

22a0 0 ~ j 22!
D S Rj

F j

Nj

D 50.

~8!

On solving Eq.~8! one finally arrives at

~ j 11!2~ j 23!~ j 227 j 115!50. ~9!

The resonancej 521 indicates the arbitrariness of the fun
tion in the singularity manifoldf and j 53 indicates that
either one of the functionsa3 , b3 or c3 is arbitrary in the
Laurent expansion. Our analysis showsb3 is arbitrary in the
Laurent expansion. The remaining two resonances are c
plex, rather than two non-negative integers, which con
dicts the assumptions of the algorithm. As a result Eqs.~5!
do not admit theP test and are nonintegrable.

III. LIE SYMMETRY ANALYSIS

We investigate the invariance properties of Eqs.~5!
through Lie group analysis@16–18#. Without going into the
details of the theory, we present only the results below.
us consider a one-parameter Lie group of infinitesimal tra
formations

Y→Y85Y1«j1~Y,Z,T,R,F,N!, ~10!

where«!1. Similar transformationsZ→Z8 andT→T8 are
defined, but with functionsj2 and j3 , respectively. In the
same way we define the transformation

R→R85R1«f1~Y,Z,T,R,F,N!, ~11!

again with similar transformationsF→F8 andN→N8, but
with functions f2 and f3 , respectively. The invariance o
Eqs. ~5! under the infinitesimal point transformations~10!
and~11! leads to expressions for the infinitesimals~through-
out this paper we use the computer programMUMATH @19# to
determine the symmetries!

j15c1Y1 f ~Z!, j252c1Z2c2 , j352g~T!,

f152S c12
1

2
ġ~T! DR, f25Y f8~Z!1h~T!1 l ~Z!,

f3522c1N1Y f9~Z!1 l 8~Z!. ~12!

Herec1 andc2 are arbitrary constants andf (Z), l (Z), g(T),
andh(T) are arbitrary real functions of their arguments a
the prime and dot denote differentiation with respect toZ and
T, respectively.

A. Similarity variables and similarity reductions

The similarity variables associated with the infinitesim
symmetries~12! can be obtained by solving the relevant i
variant surface condition or the related characteristic eq
tion. The latter reads
7-2



ys
h

al
ca
n

l
Lie

in

qs.

i-
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dY

c1Y1 f ~Z!
5

dZ

2c1Z2c2
5

dT

2g~T!
5

dR

2Fc12
1

2
ġ~T!GR

5
dF

Y f8~Z!1h~T!1 l ~Z!

5
dN

22c1N1Y f9~Z!1 l 8~Z!
. ~13!

We solve the characteristic Eq.~13! and construct similar-
ity variables. Using them we can rewrite PDE~5! with origi-
nally three independent variables~Y, Z, T! as a system of
PDE (R̃,F̃,Ñ) with only two independent variables~h, z!.
Solving the latter we obtain the solution for the reduced s
tem of PDEs. From this solution we can go back to t
original PDE through the similarity transformation.

Solving the characteristic Eq.~13! we find the similarity
variables

h5Aa~Z!Y1F~Z!,

z5EZ

a~Z8!dZ81ET

P~T8!dT8,

R5Aa~Z!AP~T!R̃,

F5F̃1Q~Z!1H~T!1hg~Z!,

N5a~Z!Ñ1Q8~Z!1hS g8~Z!2
1

2
a~Z!g~Z! D

2
a~Z!

2
g2~Z!, ~14!

where a(Z)5(Z2Z1)21 and g(Z)52F(Z)/22(Z
2Z1)F8(Z). Note thatZ1 is an arbitrary constant, andP(T),
H(T), F(Z), andQ(Z) are four independent arbitrary re
functions. These new arbitrary constants and functions
be related to the original set of arbitrary constants and fu
tions through the relationships

Z15
c2

2c1
,

P~T!5
2c1

g~T!
,

H~T!52ET h~T8!

g~T8!
dT8,

F~Z!52
1

2c1
EZ

f ~Z8!a~3/2!~Z8!dZ8,
06660
-
e

n
c-

Q~Z!5
1

2c1
F EZ

a~Z8!l ~Z8!dZ8

2EZ

f 8~Z8!F~Z8!Aa~Z8!dZ8G . ~15!

This similarity transformation transforms Eqs.~5! to the fol-
lowing system of PDEs:

R̃z1R̃hF̃h1
1

2
R̃F̃hh2

h

2
R̃h2

R̃
2

50,

R̃hh1hR̃F̃h22R̃F̃z2R̃F̃h
212R̃Ñ50,

Ñz2R̃250. ~16!

B. Lie vector fields and algebra

The presence of the real arbitrary functionsf (Z), g(T),
h(T), and l (Z) in Eq. ~12! leads to an infinite-dimensiona
Lie algebra of symmetries. The general element of this
algebra can be written as

V5V11V21V3~ f !1V4~g!1V5~ l !1V6~h!. ~17!

The associated vector fields are

V15
]

]Z
,

V25Y
]

]Y
12Z

]

]Z
2R ]

]R22N
]

]N
,

V3~ f !5 f ~Z!
]

]Y
1Y f8~Z!

]

]F
1Y f9~Z!

]

]N
, ~18!

V4~g!52g~T!
]

]T
1

R
2

ġ~T!
]

]R
,

V5~ l !5 l ~Z!
]

]F
1 l 8~Z!

]

]N
,

V6~h!5h~T!
]

]F
.

The physical interpretation of the vectors fields~18! is the
following. Vector fieldV1 @corresponding toc2 in Eq. ~12!#
indicates that Eqs.~5! are invariant under space translation
Z whereas vector fieldV2 ~corresponding toc1 in the infini-
tesimal symmetries! reflects the scale invariance of Eqs.~5!.
Since the vector fieldV3 contains an arbitrary functionf (Z)
its interpretation depends onf (Z). For example, iff (Z) is
constant thenV3 demonstrates the space invariance of E
~5! in Y direction. Similarly wheng(T) is constant one can
get time translational symmetry fromV4 . Vector field V5
demonstrates that adding an arbitrary functionl (Z) in phase
and its derivative in refractive indexN does not alter the
solution. The vector fieldV6 corresponds to adding an arb
7-3
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trary functionh(T) to the phase ofE. The nonzero commu
tation relation between these vector fields are

@V1 ,V2#52V1 , @V1 ,V3#5V3~ f 8!, @V1 ,V5#5V5~ l 8!,

@V2 ,V3#5V3~2Z f82 f 8!, @V2 ,V5#52V5~Zl8!,

@V4 ,V6#52V6~gḣ!. ~19!

IV. INVARIANCE ANALYSIS
OF THE „1¿1…-DIMENSIONAL EQUATION

Since Eq.~16! is a coupled system of nonlinear PDEs o
may repeat the invariance analysis. In the following we
vestigate this equation again through Lie group analysis
explore particular solutions associated with it.

The invariance of Eq.~16! under the one-parameter Li
group of infinitesimal transformations leads to the infinite
mal symmetries

j15Ca , j252Cb , f150,

f25
Ca

2
h1Ccz1Cd , f352

Ca

4
h1Cc , ~20!

wherej i ’s andf j ’s, i 51, 2, j 51, 2, 3 are the infinitesimals
associated with the variablesh, z, R̃, F̃, andÑ respectively
andCa , Cb , Cc , andCd are arbitrary constants.

To distinguish the vector fields associated with the sy
metries~20! from ~18! we represent the former by alphabe
cal subscripts, that is,Va , Vb , Vc , Vd . The vector fields and
nonzero commutation relation between the vector fields

Va5
]

]h
1

h

2

]

]F̃
2

h

4

]

]Ñ
, Vb5

]

]z
,

Vc52z
]

]F̃
1

]

]Ñ
, Vd5

]

]F̃
, ~21!

and

@Vb ,Vc#5Vd . ~22!

The vector fieldsVb andVd represent thez andF̃ trans-
lational invariance of Eq.~16!. Solving the characteristic
equation associated with the symmetries~20! one obtains the
similarity transformation

j5h1
Ca

Cb
z,

R̃5R̂~j!,

F̃5F̂~j!1
Cd

Ca
h1

CbCc

Ca
2 jh1S 1

4
2

CbCc

2Ca
2 Dh2,
06660
-
d
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e

Ñ5N̂~j!2
h2

8
1

Cc

Ca
h. ~23!

Using Eq.~23! one can transform Eq.~16! to the following
system of ODEs:

R̂92R̂F̂822~A1Bj!R̂F̂812R̂N̂2~C1Dj1Ej2!R̂50,

R̂F̂912R̂8F̂81~A1Bj!R̂81IR50,

N̂82
Cb

Ca
R̂250, ~24!

where primes denote differentiation with respect toj and

A5
2~Ca

21CbCd!

CaCb
, B5

2CbCc

Ca
2 , C5

Cd
2

Ca
2 ,

D5
2CbCcCd

Ca
3 , E5

Cb
2Cc

2

Ca
4 ,

I 5
~4CbCc2Ca

2!

2Ca
2 . ~25!

V. PARTICULAR SOLUTIONS

In Sec. IV, we derived a similarity-reduced ODE~24! for
the planar paraxial wave equation~5!. Solving this equation
we obtain an explicit solution forR̂, F̂, andN̂ in terms ofj,
which, in turn, leads to the solution of the original proble
through the transformations~23! and ~14!. However, as we
attempt to solve the system of coupled nonlinear ODEs~24!,
finding its solutions depends upon whether it is integrable
not. SinceP analysis provides the necessary condition
integrability we apply the same to this equation. Our analy
shows that Eq.~24! does not pass the Ablowitz-Raman
Segur algorithm@14,20# which indicates that the system~24!
is nonintegrable.

We recall that our aim is to find some analytical solutio
for Eqs. ~5!, as this helps to understand the system at le
qualitatively. After a careful analysis we found that one c
construct a subclass of solutions by restricting either of
parametersCa or Cb to zero in the symmetries~20!. As the
other two parametersCc and Cd do not affect the calcula-
tions we consider them nonzero in our following analys
Below we consider the casesCa50 andCb50 separately
and construct the associated solutions. Finally, we also se
simple travelling wave reduction for Eq.~24! and show that
this only leads to trivial solutions.

A. Solution with CbÄ0

To begin with let us considerCb50. This choice leads us
to similarity variables of the form

j5z,

R̃5R̂~j!,
7-4
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F̃5F̂~j!1
Cd

Ca
h1

Cc

Ca
hz1

h2

4
,

Ñ5N̂~j!1
Cc

Ca
h2

h2

8
. ~26!

Using the similarity transformation one can transform E
~16! to

R̂82
R̂
4

50,

F̂82N̂1
1

2 S Cd

Ca
1

Cc

Ca
j D 2

50, ~27!

N̂82R̂250,

where prime denotes differentiation with respect toj. Equa-
tion ~27! admits the general solution

R̂5I 1ej/2,

F̂5I 21S I 32
Cd

2

2Ca
2D j14I 1

2ej/22
CcCd

2Ca
2 j22

Cc
2

6Ca
2 j3,

N̂5I 312I 1
2ej/2, ~28!

whereI i , i 51, 2, 3 are integration constants. Using the sim
larity transformations~26! and ~14! in ~28! one can go back
to the original variables and write down the solution for t
Eqs.~5!. Then, also using the transformation~4!, one finally
arrives at

E5

A2c1I 1 expFc1

2
*T

dT8

g~T8!G
g~1/2!~T!~Z2Z1!~1/4! eiF,

N5I 3a~Z!1Q8~Z!12I 1
2a~Z!eS~Z,T!/21S Cc

Ca
a~Z!1g8~Z!

2
1

2
a~Z!g~Z! DR~Y,Z!2

a~Z!

2
g2~Z!

2
a~Z!

8
R2~Y,Z!, ~29!

where

F5I 21Q~Z!1H~T!1S Cd

Ca
1g~Z! DR~Y,Z!14I 1

2eS~Z,T!/2

1F S I 32
Cd

2

2Ca
2D 2

CcCd

2Ca
2 S~Z,T!2

Cc
2

6Ca
2 S2~Z,T!GS~Z,T!

1
Cc

Ca
R~Y,Z!S~Z,T!1

1

4
R2~Y,Z!
06660
.

-

andQ(Z), H(T), g(Z), R(Y,Z) ~5h!, andS(Y,Z)(5z) are
given in Eqs.~14! and ~15!.

Solution~29! represents a solution in which the transver
~Y! dependence in the refractive indexN does not mix with
time. In other words, the refractive index evolution depen
on Z andT, but not onY. This is consistent with Eq.~29! in
which the only Y dependence of the electric field ente
through the phaseF and, therefore, does not enter the fie
intensity. We return to this observation in Sec. VII.

B. Solutions with CaÄ0

In Sec. V A we considered the case in which the similar
variable j depends only on the variablez. However, one
could also consider the case in whichj is a function ofh
alone which can be obtained from the infinitesmial symm
tries ~20! by takingCa50. Repeating the calculations give
in the preceding section with this restriction we obtain a
other class of solution of the form

E5ACc

Cb
Aa~Z!AP~T!eiF,

N5S I 2
2

2
1

Cd

Cb
Da~Z!1Q8~Z!2

a~Z!

2
g2~Z!

1
Cc

Cb
a~Z!S~Z,T!1S I 2

2
a~Z!1g8~Z!

2
a~Z!

2
g~Z! DR~Y,Z!, ~30!

F5I 11Q~Z!1H~T!1@ I 21g~Z!#R~Y,Z!,

1
1

2
R2~Y,Z!1S Cd

Cb
1

Cc

2Cb
S~Z,T! DS~Z,T!,

andQ(Z), H(T), R(Y,Z) ~5h!, andS(Z,T)(5z) are given
in Eqs.~14! and~15! andI 1 andI 2 are integration constants

In this case also we obtain a solution in which the amp
tude ofE is independent ofY so that the refractive evolution
does not depend onY. A reason for obtaining this type o
solution is the restriction of either one of the constantsCa
50 or Cb50 in the infinitesimal symmetries~20!. This takes
us to the similarity reduced ODE that can be integrated
give R̂ as a function ofz or constant. Rewriting this in term
of old variables we get a solution in which the amplitude p
of E depends only on the variables~Z,T!.

C. Traveling wave reduction with Cc , CdÄ0

We here consider a simple traveling wave reduction to
PDE ~16! from the symmetries~20! by restrictingCa5Cb
51 andCc5Cd50. We now have the similarity variable
that contain bothh andz and in particular

j5h1z, R̃5R̂, F̃5F̂1~h2/4!,

Ñ5N̂2~h2/8!. ~31!
7-5
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The associated similarity-reduced ODE takes the sim
form

R̂92R̂F̂8222R̂F̂812R̂N̂50,

R̂F̂912R̂8F̂812R̂82
R̂
2

50, ~32!

N̂82R̂250.

We have applied the Ablowitz-Ramani-Segur algorithm
Eq. ~32! and confirmed that it is nonintegrable. To explo
special cases, we solve Eq.~32! with F̂50. In this case one
arrives at an overdetermined system of ODE, which admi
compatible solutionR̂50 andN̂5I , whereI is an integra-
tion constant. As a result one obtains

E50,

N5Ia~Z!1Q8~Z!12
a~Z!

2
g2~Z!

1S g8~Z!2
1

2
a~Z!g~Z! DR~Y,Z!, ~33!

whereI is an integration constant andR(Y,Z) ~5h! is given
in Eq. ~14!. This class of solutions does not depend on ti
at all sinceE50. In this case we therefore obtain a spec
case of the trivial solutionE50, which is consistent with any
arbitrary refractive index distribution. We note that one cou
proceed withN̂50, but this also leads to a class of solutio
with E50.

As there are no other possibilities to consider in the
finitesimal symmetries~26! we conclude that the solution
~29! and ~30! are the only nontrivial solutions one can co
struct for this problem through this approach.

VI. GROUP THEORETICAL INTERPRETATION
OF EARLIER RESULTS

In this section we show the results reported earlier@12#
can be derived from our present studies as a special case
give group theoretical interpretation for the earlier results
Sec. III A we constructed a general similarity transformati
~14! and derived the similarity reduced (111)-dimensional
PDE ~16! by assuming none of the arbitrary functions
constants is zero in the infinitesimal symmetries~12!. Now,
restricting f (Z)5g(T)5 l (Z)5c150 and c2521 in Eq.
~12! we obtain the similarity variables

h5Y, Z5T, R5R̃~h,z!,

F5F̃~h,z!1b~z!Z, N5Ñ~h,z!. ~34!

Using this similarity transformation we rewrite Eqs.~5! as

2R̃hF̃h1R̃F̃hh50,
06660
le

a

e
l

-

nd
n

R̃hh2R̃Fh
212@Ñ2b~z!#R̃50, ~35!

Ñz2R̃250.

RestrictingF̃ to be a function ofz alone we obtain

R̃hh12@N2b~z!#R̃50, Ñz2R̃250, ~36!

which is the similarity reduction that is reported in the liter
ture @12#. Solving Eq.~36! one obtains an explicit solution
for R̃ and Ñ. Rewriting the solutions in terms of old vari
ables and using the transformation~4! one can find exactly
the modal ansatz discussed in the literatureE(Y,Z,T)
5R(Y,T)exp@ib(T)Z# @12#.

Equation~36! is invariant under the infinitesimal symme
tries

j15Cah2Cb ,

j252
2

b8~z!
@Cab~z!1Cc#,

f152
b9~z!R̃
@b8~z!#2 @Cab~z!1Cc#, ~37!

f2522~CaÑ1Ce!,

wherej1 , j2 , f1 , f2 are the infinitesimals associated wi
the variablesh, z, R̃, andÑ, respectively andCa , Cb , Cc
are arbitrary constants. Solving the characteristic equa
associated with the symmetries~37! leads to the similarity
variables

j5~Cah2Cb!S b~z!1
Cc

Ca
D 1/2

,

R̃5R̂~j!@b8~z!#1/2,

Ñ5N̂~j!S Cc

Ca
1b~z! D2

Cc

Ca
. ~38!

Similarity transformation~38! transforms Eq.~36! to

R̂91
2

Ca
2 ~N̂21!R̂50,

jN̂812N̂22R̂250, ~39!

where prime denotes differentiation with respect toj. Equa-
tion ~39! with Ca51 has been derived in a different mann
from Eq. ~36! by Monro et al. @12#. Here we have given a
group theoretical interpretation of this result equation. W
cannot construct any exact solution for Eq.~39!.

VII. DISCUSSION AND CONCLUSIONS

We carried out a detailed group theoretical analysis for
coupled PDEs~1! and ~2! describing self-writing in planar
7-6
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structures. Even though these equations are well studied
exact solutions were known. Through a Lie group analy
we found here a class of analytical solutions to this probl
for the first time. However, these solutions either exhibit
evolution at all~Sec. V C!, or describe an evolution that doe
not depend on the transverse coordinatey ~Secs. V A and
V B!. The latter type of solution is unlikely to be directl
associated with experimental results as they would requir
incident wave with infinite cross section. However, these
lutions should not be dismissed for this reason as stan
wave propagation can be understood using plane waves
cross section of which is also infinite. This points to furth
study of the results in Secs. V A and V B: note that the pr
ence of four arbitrary functions in the expressions leads
very large space of solutions.

We do note that our approach here is more general t
the modal ansatz of Monroet al. @12#, discussed in Sec. VI
There the phase factor depends onz and t, but not ony,
whereas in our treatment they dependence is also explicitl
included.

One of the main results of our analysis are the analyt
solutions discussed in Sec. V. In addition to this, howev
we have found the most general forms of the reduced E
~16! and ~24!. Though we did find analytical solutions, an
other approach is to solve these equations numerically,
ject to suitable boundary conditions atuyu→`. Though this
only allows one to find a subset of the solutions full Eqs.~1!
and ~2!, the reduced equations are much easier to solve.

ACKNOWLEDGMENT

This work was supported by the Australian Resea
Council.

APPENDIX

1. Two photon case results

In this section, we discuss Lie symmetry analysis for
two-photon photosensitivity process, which is described
takingp52 in Eqs.~5!. As the procedure is analogous to th
one-photon case, we report only the end results below.

a. Lie symmetries, vector fields, and algebra

The invariance of Eqs.~5! under the one-parameter Li
group of infinitesimal transformations~10! and~11! leads to
the infinitesimal symmetries

j15
f 8~Z!

2
Y1p~Z!, j25 f ~Z!, j352g~T!,

f152
R
4

@ f 8~Z!2ġ~T!#,

f25h~T!1 l ~Z!1p8~Z!Y1
f 9~Z!

4
Y2,

f352 f 8~Z!N1 l 8~Z!1p9~Z!Y1
f-~Z!

4
Y2. ~A1!
06660
no
is

an
-
rd

the
r
-
a

n

l
r,
s.

b-

h

e
y

In the abovef (Z), p(Z), l (Z), g(T), h(T), are arbitrary
functions of their arguments and the prime and dot den
differentiation with respect toZ andT, respectively. The as
sociated vector fields are

V5V1~ f !1V2~p!1V3~g!1V4~ l !1V5~h!, ~A2!

where

V1~ f !5
f 8~Z!

2
Y

]

]Y
1 f ~Z!

]

]Z
2

f 8~Z!

4
R ]

]R

1
f 9~Z!

4
Y2

]

]F
2S N f8~Z!2

f-~Z!

4
Y2D ]

]N
,

V2~p!5p~Z!
]

]Y
1p8~Z!Y

]

]F
1p9~Z!Y

]

]N
,

V3~g!52g~T!
]

]T
1

R
4

ġ~T!
]

]R
,

V4~ l !5 l ~Z!
]

]F
1 l 8~Z!

]

]N
,

V5~h!5h~T!
]

]F
. ~A3!

The nonzero commutation relation between the vector fie
are

@V1 ,V2#5V2S f p82
p f8

2 D , @V1 ,V4#5V4~ f l 8!,

@V3 ,V5#52gV5~ ḣ!. ~A4!

b. Similarity variables and reduction

As discussed in Sec. III A, solving the characteristic eq
tion associated with the symmetries~A1! one can construc
the similarity transformations that now are

h5Aa~Z!Y1F~Z!,

z5EZ

a~Z8!dZ81ET

P~T8!dT8,

R5a1/4~Z!P1/4~T!R̃~h,z!, ~A5!

F5F̃1Q~Z!1H~T!1g1~Z!h1g2~Z!h2,

N5a~Z!Ñ1Q8~Z!1hS g18~Z!1
a8~Z!

2a~Z!
g1~Z! D

1h2@g28~Z!22a~Z!g2
2~Z!#2

a~Z!

2
g1

2~Z!,

where g1(Z)52„2g2(Z)F(Z)1F8(Z)/a(Z)…, g2(Z)5
2a8(Z)/4a2(Z), anda(Z), P(T), H(T), F(Z), andQ(Z),
are five independent arbitrary real functions. These new
7-7
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bitrary functions can be related to the original set of arbitr
functions through the relationships

a~Z!5
1

f ~Z!
,

P~T!5
1

g~T!
,

H~T!52ET h~T8!

g~T8!
dT8,

F~Z!52EZ

p~Z8!a3/2~Z8!dZ8,

Q~Z!5EZ

a~Z8!l ~Z8!dZ81
1

4 E
Z

f 9~Z8!F2~Z8!dZ8

2EZ

p8~Z8!a1/2~Z8!F~Z8!dZ8. ~A6!

This similarity transformation transforms Eqs.~5! to the sys-
tem of PDEs,

R̃z1R̃hF̃h1
1

2
R̃F̃hh50,

R̃hh22R̃F̃z2R̃F̃h
212R̃Ñ50,

Ñz2R̃450. ~A7!

We note in the similarity reduced (111)-dimensional PDE
there is no explicit presence of the independent variable
like in the one-photon case.

c. Lie symmetries and similarity reductions of Eq. (A7)

Applying the Lie algorithm again to Eq.~A7! one obtains
the Lie symmetries

j15Cah1Cb , j252Caz2Cc , f152CaR̃,

f25Cdz2Ce , f3522CaÑ1Cd , ~A8!

wherej i ’s and f j ’s, i 51,2, j 51,2,3 are the infinitesimals
associated with the variablesh, z, R̃, F̃, andÑ respectively
andCi , i 5a,...,e are arbitrary constants.

The vector fields associated with the symmetries are

Va5h
]

]h
12z

]

]z
2R̃ ]

]R̃
22Ñ

]

]Ñ
, Vb5

]

]h
,

Vc5
]

]z
, Vd5z

]

]F̃
1

]

]Ñ
, Ve5

]

]F̃
. ~A9!
06660
y

n-

The vector fieldVa reflects the scale invariance of Eq.~A7!
whereas vector fieldsVb , Vc , andVe demonstrate the trans
lational invariance of Eq.~A7! in the directionsh, z and F̃
respectively.

Solving the characteristic equation associated with
symmetries~A8! one gets the following similarity transfor
mation:

j5
~Cah1Cb!

~2Caz2Cc!
1/2, R̃5

R̂~j!

~2Caz2Cc!
1/2,

F̃5
Cd

2Ca
z1

~CcCd22Ca
3Cc!

4Ca
4 ln~2Caz2Cc!1F̂~j!,

Ñ5
Cdz

~2Caz2Cc!
1

N̂~j!

~2Caz2Cc!
. ~A10!

Using Eq.~A10! one can rewrite Eq.~A7! as

R̂92R̂F̂821
2

Ca
jR̂F̂81

2

Ca
2 R̂N̂1

2Ce

Ca
2 R̂50,

R̂F̂912R̂8F̂82
2

Ca
~jR̂81R̂!50, ~A11!

jN̂81
1

Ca
R̂412N̂1

CcCd

Ca
50,

where the prime denotes differentiation with respect toj.

d. Particular solutions

Since Eq.~A11! is nonintegrable we construct the sol
tions by restricting some of the parameters to zero in
infinitesimal symmetries~A8!. First we takeCa5Cc50. In
this case we obtain

E5I 1a1/4~Z!P1/4~T!eiF,

N5I 3a~Z!1Q8~Z!2
a~Z!

2
g1

2~Z!1I 1
4a~Z!S~Z,T!

1S Cd

Cb
a~Z!1g18~Z!1

a8~Z!

2a~Z!
g1~Z! DR~Y,Z!1~g28~Z!

22a~Z!g2
2~Z!!R2~Y,Z!, ~A12!

where

F5I 21Q~Z!1H~T!1S g1~Z!2
Ce

Cb
DR~Y,Z!

1S I 32
Ce

2

2Cb
2DS~Z,T!1g2~Z!R2~Y,Z!1S I 1

4

2
1

CdCe

2Cb
2 D

3S2~Z,T!1
Cd

Cb
R~Y,Z!S~Z,T!2

Cd
2

6Cb
2 S3~Z,T!,
7-8
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wherea(Z), P(T), H(T), F(Z), Q(Z), R(Y,Z)(5h), and
S(Z,T)(5z) are defined in Eqs.~A5! and ~A6!.

In the second choice we restrictCa5Cb50 and obtain
the following class of solution:

E5I 1
1/4a1/4~Z!P1/4~T!eiF,

N5S I 2
2

2
2

Ce

Cc
Da~Z!1Q8~Z!2

a~Z!

2
g1

2~Z!

1S g18~Z!1
a8~Z!

2a~Z!
g1~Z! DR~Y,Z!

1@g28~Z!22a~Z!g2
2~Z!#R2~Y,Z!1I 1a~Z!S~Z,T!,

~A13!

with
L.

R
D

.

c

. E

06660
F5I 31Q~Z!1H~T!1@ I 21g1~Z!#R~Y,Z!2
Ce

Cc
S~Z,T!

1g2~Z!R2~Y,Z!1
I 1

2
S2~Z,T!,

wherea(Z), P(T), H(T), F(Z), Q(Z), R(Y,Z)(5h), and
S(Z,T)(5z) and I 15(Cd /Cc) are defined in Eqs.~A5! and
~A6!.

We note that the solutions~A12! and~A13! are similar to
the one-photon case results. The electric field only depe
on the transverseY coordinate through its phase; the evol
tion of the refractive indexN therefore does not depend onY.
However, the refractive index in the two-photon case so
tions depend on the transverse coordinate quadratically
contain five arbitrary functions compared to one-photon c
that contains only four arbitrary functions.
,
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