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Symmetries and invariant solutions of the planar paraxial wave equation in photosensitive media
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We study the equations describing planar self-written waveguides through group theoretical methods. We
show the equations are nonintegrable through Pairdeadysis. Using Lie group analysis we construct a class
of exact solutions for this problem. We also show the previously reported modal ansatz solutions can be
recovered from our present results as a special case.
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[. INTRODUCTION Apart from fully numerical approaches, insight into the
solutions of the nonlinear partial differential equations

The formation of a self-written waveguide is an example(PDE9 (1) and (2) has been obtained by a Taylor series
of a self-action effect in which light, propagating through amethod, using as the small parametgt1], and an approach
photosensitive medium, is confined by the waveguide that ibased on self-similar solutiond.2], neither of which has
generates. This effect is general and requires a medium itlead to analytical solutionsThe aim of the present work is to
which the refractive index increases permanently with thefind such solutions. To do this, we use the method of Lie
cumulative fluence of light. Examples of media in which groups, one of the powerful tools available to solve nonlinear
self-writing has been observed include photosensitive glassd¥DEs, and which can be used to derive a large class of spe-
[1,2], electro-optic crystal$3] in planar geometries, photo- cial solutions. The exact solutions that arise from symmetry
resist[4,5], photopolymerizable resif6], UV-cured epoxy methods can often be used effectively to study properties
[7], and silica glas$8] in bulk. Similar effects are also ob- such as asymptotics and divergences.
served in photorefractive materidig]. In this work we consider the planar geometry at the early

A self-writing effect that has been thoroughly studied isstages of the waveguide evolution, consistent with the as-
that in the planar photosensitive glass geometry. In this andumptions in an earlier workl2]. We investigate both the
related work it was found that the experimental results ar@ne-photon casfp=1 in Eq. (1)] with the results given in
consistent with a local model for the photosensitivity inthe main text, and the two-photon cage=2 in Eq. (1)],
which the refractive index change at some position only dewith the results given in the Appendix.
pends on the integrated fluence at that position. The actual To apply our analysis we first write E¢L) in dimension-
relationship between these was found to be well described blgss form. To do this we introduck Z, Y, N, andE to be the

[10] dimensionless equivalents of the physical quantities, y;
An, and &, respectively, defined byzazkgnoAt(E’oé’g)p,

aA—n=A|£|2F’ 1 ﬂ) B Y=yla, Z=12/(kgnoa?), N=a’kin,An, andE=E/&,. Here

ot Ang)’ a is a measure of the beam width, afidis the typical large

electric field amplitude. Since we consider the early evolu-
where¢ is the electric field amplitudein is the refractive  tion we may ignoreAng and takeA to be real[see Eq(1)].
index changeAng is a saturation value for the refractive The normalized equations are thus
index change, and is a constant describing the strength of
the photosensitivity. For one-photon processes we have
=1, while for two-photon processgs=2. The constanA
was found to have a small imaginary part, corresponding to a
self-induced increase in the los4d9)]. Both this effect and NT—|E|2'3=O. ®)
the saturation are only relevant at the late stages of
waveguides’ evolution; during the initial stages both effects To study the invariance and integrability properties of
may be neglected. To obtain a complete description of thé&gs. (3), we introduce the transformation to the real func-
self-writing process, we require the paraxial wave equationtions corresponding to amplitude and phase

1
|Ez+ EEyy+ NE: 0,

9E 1 %€ An E=R(Y,Z,T)e*™2D, 4
|E+ﬁﬁ+kon_(€zo, (2)
y 0 so that they can be written as

which describes light propagation in the evolving planar 1
structure. Here is the propagation directiory, is the trans- R;+Ry®y+ s RDPyy=0,
verse directionk is the wave numbek is the electric field 2

amplitude, andAn/ng is the relative change in the initial )
refractive indexn,. Ryy—2RP;—RP,+2RN=0,
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Ny—R*P=0, (5) 0 (J+1)(j—3)(af2) 0 R,
ii—4) 0 2a, ®; | =0.

the set of equations used throughout the rest of the paper. —2a, 0 (j—2) N;

The structure of the paper is as follows. In Sec. Il, we (8)
apply Painleveanalysis to the planar paraxial wave equation
(5) with p=1. In Sec. lll, we present the Lie symmetry On solving Eq.(8) one finally arrives at
analysis for Eqs(5). We perform the invariance analysis for
the (1+1)-dimensional system of PDEs and construct the (J+1)2(j—3)(j>~7j+15)=0. 9

resulting ordinary differential equatiof®©DES in Sec. IV.

As the general ODE is nonintegrable we consider a subclasEhe resonancg= —1 indicates the arbitrariness of the func-
of symmetries and construct three different classes of solution in the singularity manifold$ and j=3 indicates that
tions in Sec. V. In Sec. VI, we show the earlier results re-either one of the functionas, b or c; is arbitrary in the
ported in the literatur¢12] can be derived from our present Laurent expansion. Our analysis sholigsis arbitrary in the
studies as a subcase. We present our conclusions in Sec. VHaurent expansion. The remaining two resonances are com-

Finally, we discuss briefly the results fpe=2 in Egs.(5) in  Plex, rather than two non-negative integers, which contra-
the Appendix. dicts the assumptions of the algorithm. As a result Ef5.
do not admit theP test and are nonintegrable.

IIl. PAINLEVE ANALYSIS IIl. LIE SYMMETRY ANALYSIS

Here we apply Painlevanalysis to the PDEES) with p - \ye inyestigate the invariance properties of EdS)
=1. Note that all references to these equations in the Malifhrough Lie group analysiEL6—18. Without going into the
text implicitly refer to this case only; in the Appendix We yetails of the theory, we present only the results below. Let

consider the case with=2. Recall that the Painlevestis a 5 consider a one-parameter Lie group of infinitesimal trans-
necessary condition for the integrability of the given nonlin-¢5mations

ear PDE[13]. As originally formulated by Ablowitzet al.

[14], the Painleveconjecture asserts that all similarity reduc- Y=Y =Y+e&(Y,Z,T,R,®,N), (10)
tions of a completely integrable PDE should have the Pain-

leve property, that is, their solutions should have no movablgyheres<1. Similar transformationZ —Z' andT—T' are

singularities other than poles in the complex plane. A latefjefined, but with functions, and £;, respectively. In the
version of the Painlevetest, the Weiss-Tabor-Carnevale same way we define the transformation

(WTC) algorithm due to Weisst al.[15,13, allows testing

the PDEs directly, without recourse to ODEs. A PDE s said R—R'=R+edy(Y,Z,T,R,® N), (11

to have the Painlevproperty if its solutions in the complex

plane are single valued in the neighborhood of all its mov-again with similar transformation® —®’ andN—N’, but

able singularities. with functions ¢, and ¢, respectively. The invariance of
As a first step we now effect a local Laurent expansion inggs. (5) under the infinitesimal point transformatios0)

the neighborhood of a noncharacteristic singular manifolchnd(11) leads to expressions for the infinitesiméisrough-

#(Y,Z2,T)=0, (¢y,dz,$7#0). Assuming the leading or- out this paper we use the computer prognammatH [19] to

ders of the solutions of Eq$5) have the form determine the symmetrigs

R~agdl, ®~byd", N~NyoP, (6) &1=cY+1(2), 2=2C1Z—Cy, &3=—9(T),

1
and substituting Eq(6) into Egs.(5) and balancing dominant 1=~ ( C1— EQ(T)>R, bo=Y T (Z)+h(T)+1(2),
terms, one obtaing=—3/2,r =1, p= — 2 with the leading-
order coeff|C|ent$}0— 15_/4, bo=—1, Ng=— 15_/8. _ b3=—2c,N+Y(2)+1'(2). (12)
The next step is to find the powers at which the arbitrary

functions can enter into the Laurent series. Let us substitutRerec, andc, are arbitrary constants aridz), 1(2), g(T),

the expression andh(T) are arbitrary real functions of their arguments and
the prime and dot denote differentiation with resped end
R= a0¢>‘3’2+ a ¢[J -G p= bo+b; pUtY), T, respectively.

) A. Similarity variables and similarity reductions
N=Nop 2+N;¢! "2, (7) o . . o
! The similarity variables associated with the infinitesimal

symmetrieg12) can be obtained by solving the relevant in-
into Egs.(5) and considering leading-order terms alone, wevariant surface condition or the related characteristic equa-
obtain the set of equations tion. The latter reads
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dy  dz  dT dRrR
c,Y+f(Z) 2c,Z—c, —g(T) [
~|ei-3
B dd
S Y(Z)+h(T)+1(2)
dN

T 2 N+Y () +1(2)

We solve the characteristic E(L.3) and construct similar-
ity variables. Using them we can rewrite P& with origi-
nally three independent variabl€¥, Z, T as a system of
PDE (R,®,N) with only two independent variables;, ).
Solving the latter we obtain the solution for the reduced sys-
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Q)=

1 z
T J a(ZH(2)dzZ'

Z
—f f1(ZYF(Z)Wa(ZhdZ'|. (15

This similarity transformation transforms Ed$) to the fol-
lowing system of PDEs:

(13

R,—5=0,

I\.)| el

O
R(‘l’ RW(I)”+ §R®7777_

NS

D D i D D2 PN —
Ryt 7R~ 2RD,~ RD2+2RN =0,

N,—R?=0. (16)

tem of PDEs. From this solution we can go back to the

original PDE through the similarity transformation.
Solving the characteristic Eq13) we find the similarity

variables

n=Va(Z)Y+F(2),
{= fza(Z’)dZ’+ fTP(T’)dT’,

R=\a(Z)JVP(T)R,

=D +Q(Z)+H(T)+ n¥(2),

N=a(Z)N+Q'(2)+ 7

_ Q 72(2)

1
y'(Z)— Ea(Z) Y(2)

B. Lie vector fields and algebra

The presence of the real arbitrary functio&), g(T),
h(T), andl(2) in Eqg. (12) leads to an infinite-dimensional
Lie algebra of symmetries. The general element of this Lie
algebra can be written as

The associated vector fields are

1%

Vlzﬁl

d
Vo=Y—— +ZZ——R——2N

aY 9z IR N’

V(f )—f(Z)—+Yf (Z)—+Yf”(Z)aiN, (18)

(14

J R. d
V4(g)=—g(T)ﬁ+ Eg(T)ﬁ,

where «a(2)=(Z-2,)"' and y(Z)=-F(2)2—(Z

—Z1)F'(2). Note thatZ, is an arbitrary constant, ar(T),
H(T), F(Z), andQ(Z) are four independent arbitrary real
functions. These new arbitrary constants and functions can
be related to the original set of arbitrary constants and func-

tions through the relationships

Co
Zl—Z_Cl,
2c
P(T)=——

9(m)’

Th(T')
H=- | G aT

1 rz
F(Z):—z—clf f(z')a®?(z")dZ’,

] a
Vs()=1(2) 25 +1"(2) -5

d
Ve(h)=h(T) -

The physical interpretation of the vectors fields) is the
following. Vector fieldV, [corresponding t@, in Eq. (12)]
indicates that Eq€5) are invariant under space translation in
Z whereas vector fiel®, (corresponding te, in the infini-
tesimal symmetriesreflects the scale invariance of E@S).
Since the vector field/; contains an arbitrary functioh(Z)

its interpretation depends di{Z). For example, iff(Z) is
constant therV; demonstrates the space invariance of Egs.
(5) in Y direction. Similarly wherg(T) is constant one can
get time translational symmetry froi,. Vector field Vs
demonstrates that adding an arbitrary functi@n) in phase
and its derivative in refractive indeX does not alter the
solution. The vector field/g corresponds to adding an arbi-
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2

trary functionh(T) to the phase oE. The nonzero commu- ~ e n° Cg
tation relation between these vector fields are N=N(&)— 8 + C. 7- (23
[V1,Vo]=2Vq, [V1,V3]=V3(f'), [V1,V5]=Vs(l'), Using EQ.(23) one can transform Ed16) to the following

system of ODEs:
[V2,V3]=V3(2ZF" —1"), [V;,,Vs]=2Vs(Zl"), o . o R
R'—RD'?>— (A+BERDP'+2RN—(C+DE+HEEH)R=0,

[V4.Vel=—Ve(gh). (19) e .
are ® RD"+2R' ' +(A+BER +IR=0,
IV. INVARIANCE ANALYSIS R Cb .
OF THE (1+1)-DIMENSIONAL EQUATION N — C—'RZZ 0, (24)
a

Since Eq.(16) is a coupled system of nonlinear PDEs one ) ) o .
may repeat the invariance analysis. In the following we in-where primes denote differentiation with respecttand

vestigate this equation again through Lie group analysis and

2 2
explore particular solutions associated with it. _ 2(Ca+CpCa) _ 2CpCe _ &
The invariance of Eq(16) under the one-parameter Lie C.Cy ’ Cg ' Cg’
group of infinitesimal transformations leads to the infinitesi-
mal symmetries 2C,C.Cqy cic?
c: v c:

§=C,, &H=—-Cp, ¢1=0,
(4C,C—C3)

C C 2
$2=5 1t Cl+Cq, ds=— 7 n+Cc,  (20) 2C? (25
whereé;’s and¢;’s, i=1, 2,j=1, 2, 3 are the infinitesimals V. PARTICULAR SOLUTIONS
associated with the variableg £, R, ®, andN respectively In Sec. IV, we derived a similarity-reduced OmE4) for
andC,, Cp, C¢, andCy are arbitrary constants. the planar paraxial wave equati¢B). Solving this equation

To distinguish the vector fields associated with the sym- . - . PN o
metries(20) from (18) we represent the former by alphabeti- we_obta_un an explicit solution fOR.’ @, andN in t_erms Of¢,
cal subscripts, that i/, V. V., V4. The vector fields and which, in turn, leads to '_[he solution of the original problem
nonzero commutation relation between the vector fields arethrongh the transformation@3) and (14). Hoyvever, as we
attempt to solve the system of coupled nonlinear OES,
finding its solutions depends upon whether it is integrable or
_ not. SinceP analysis provides the necessary condition for
n 2 9d 49N 14 integrability we apply the same to this equation. Our analysis
shows that Eq.(24) does not pass the Ablowitz-Ramani-
Segur algorithnj14,20 which indicates that the syste(@4)

V, = _§i+ i, Vd=i, (21) is nonintegrable.
9® N Py We recall that our aim is to find some analytical solutions
for Egs. (5), as this helps to understand the system at least
and qualitatively. After a careful analysis we found that one can
construct a subclass of solutions by restricting either of the
[Vy,V]=Vy. (22)  parameter<, or Cy to zero in the symmetrie0). As the

other two parameter€. and C4 do not affect the calcula-
tions we consider them nonzero in our following analysis.
Below we consider the cas&€3,=0 andC,=0 separately
and construct the associated solutions. Finally, we also seek a
simple travelling wave reduction for E¢R4) and show that

this only leads to trivial solutions.

The vector fields/, andV, represent the¢ and® trans-
lational invariance of Eq(16). Solving the characteristic
equation associated with the symmetii26) one obtains the
similarity transformation

Ca
E=n+ C_bg’ A. Solution with C,=0
To begin with let us consideZ,= 0. This choice leads us
73:7“2( &), to similarity variables of the form
§={,
5)=<T>(§)+&n+—bz—c§n+ L%;),?z, .
Ca’ Ci 4 2C; R=R(¢),
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- . Cqy C¢ 7?
<I>—<1>(§)+C—a77+c—ané’+ R

772

3 (26)

o C.
N=R(&)+ 57

Using the similarity transformation one can transform Eq
(16) to

Y
2

Ca

(27)

N’ —R?=0,

where prime denotes differentiation with respecttd&qua-
tion (27) admits the general solution

7’?,=|1e§/2,

2 2

. Cc.C C
— d 2. ¢ ~c~d o C 3
D=1+ l3— = | E+4l%e?— —— £2— ,
20\3 2c? Eraly 2C2 escgg

N=15+212e¢?, (28)
wherel;, i=1, 2, 3 are integration constants. Using the simi-

larity transformation$26) and (14) in (28) one can go back

PHYSICAL REVIEW E 65 066607

andQ(2), H(T), y(2), R(Y,Z) (=7), andS(Y,Z)(=¢) are
given in Egs.(14) and (15).

Solution(29) represents a solution in which the transverse
(Y) dependence in the refractive inddkdoes not mix with
time. In other words, the refractive index evolution depends
onZ andT, but not onY. This is consistent with Eq29) in
which the only Y dependence of the electric field enters
‘through the phasé and, therefore, does not enter the field
intensity. We return to this observation in Sec. VII.

B. Solutions with C,=0

In Sec. V Awe considered the case in which the similarity
variable ¢ depends only on the variable However, one
could also consider the case in whighis a function of »
alone which can be obtained from the infinitesmial symme-
tries (20) by takingC,=0. Repeating the calculations given
in the preceding section with this restriction we obtain an-
other class of solution of the form

E= \/%\/a(Z) P(T)e'?,
b

a(Z)

|2
N=|5 «(2)+Q'(2)~ —¥(2)

d
+ —
Co

I
> a2)+7'(2)

Cec
+C—ba(Z)S(Z,T)+

a(Z)

- TV(Z)> R(Y.2), (30

to the original variables and write down the solution for the

Egs.(5). Then, also using the transformatiof), one finally
arrives at
} i®

€,

L dT

C1
\/2_01|16XF{EI g(T/)

g AT Z-2) ™

E=

N=l3a(Z)+ Q" (Z)+213a(Z)e3* "2+

Cc
C—aa(ZH v'(2)

a(Z)

1
-5 a(2) y<2>) R(Y.2)~ —5—74(2)

a(Z
- (T) RE(Y.2), (29
where
Cq 2 12
=12+ Q) +H(M+| &~ +¥2) R(Y,Z)+417e52T
a
+[ [ Ca) _CCe zT CgSZZT S(z,T
ST 2_C§_S(') 6c? (Z,T)|S(Z,T)

Ce 1,
+Z°R(Y,2)S(Z,T)+ 5 RA(Y.2)
C. 4

C=1,+Q(2)+H(T)+[I+ ¥ (2)]R(Y,2),

Ce
2C,

AT it

S(Z,T)) S(Z,T),

andQ(2), H(T), R(Y,Z) (=x), andS(Z,T)(={) are given

in Egs.(14) and(15) andl; andl, are integration constants.
In this case also we obtain a solution in which the ampli-

tude ofE is independent oY so that the refractive evolution

does not depend oM. A reason for obtaining this type of

solution is the restriction of either one of the consta@is

=0 orC,=0 in the infinitesimal symmetrig®0). This takes

us to the similarity reduced ODE that can be integrated to

give R as a function of or constant. Rewriting this in terms
of old variables we get a solution in which the amplitude part
of E depends only on the variablézg,T).

C. Traveling wave reduction with C., C4=0
We here consider a simple traveling wave reduction to the
PDE (16) from the symmetrieg20) by restrictingC,=C,
=1 andC.=Cy4=0. We now have the similarity variables
that contain bothy and ¢ and in particular

E=p+l, R=R, =D+ (5%4),

N=N-(75?%8). (32)
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The associated similarity-reduced ODE takes the simple R, —RD2+2[N-B()]R=0 (35)
form K 7 ’
S A2 0B s R N, R2=0.
R'—RD'?—2RD"+2RN=0, ¢
Restricting® to be a function of/ alone we obtain

o a A s ~ R
RP"+2R'®'+2R _5—0, (32 R,,,]+2[N—,B(§)]R=0, Ng_RZZO, (36)

which is the similarity reduction that is reported in the litera-
ture [12]. Solving Eq.(36) one obtains an explicit solution
for R andN. Rewriting the solutions in terms of old vari-
ables and using the transformatiof) one can find exactly
the modal ansatz discussed in the literatl€Y,Z,T)

N’ —R2=0.

We have applied the Ablowitz-Ramani-Segur algorithm to
Eqg. (32) and confirmed that it is nonintegrable. To explore
special cases, we solve E&2) with ®=0. In this case one =R(Y,T)exdifMZ] [12]

arrives at an overdeAtermlned §ystem of ODE, which admits a Equation(36) is invariant under the infinitesimal symme-
compatible solutio’R=0 andN=1, wherel is an integra- tries

tion constant. As a result one obtains

§1=Can—0Cy,
E=0,
£2= — o [Cap(0)+C]
N=Ia(Z)+Q’(Z)+—%Z) 2(2) BT o
B'(OR
1 = 2
Hy@-za@v2 R, @3 P AT Cel 47

wherel is an integration constant al(Y,Z) (=7) is given $2=—2(CaN+Co),

in Eq. (14). This class of solutions does not depend on time e . .
] : ) . whereé,, &, &4, are the infinitesimals associated with
at all sinceE=0. In this case we therefore obtain a special €1, &2, b1, b2

case of the trivial solutioE =0, which is consistent with any the Va[)l_ablesn, {, R, andN, Ir?SpeﬁtlveR/ an,, Cp, Cc
arbitrary refractive index distribution. We note that one could@'€ arbitrary constants. Solving the characteristic equation

roceed withN =0, but this also leads to a class of solutionsassomat(_}d with the symmetri€37) leads to the similarity
\?vith E—0 ’ variables

As there are no other possibilities to consider in the in- C.
finitesimal symmetrieg26) we conclude that the solutions §=(Can—Cb)(,B(§)+ C.
(29) and(30) are the only nontrivial solutions one can con- a
struct for this problem through this approach.

1/2

R=R(O[B ()],

VI. GROUP THEORETICAL INTERPRETATION o
OF EARLIER RESULTS N=N(¢)

=4 B - == 38
In this section we show the results reported eaflit]

can be derived from our present studies as a special case apdhilarity transformatior(38) transforms Eq(36) to
give group theoretical interpretation for the earlier results. In

Sec. Il A we constructed a general similarity transformation R + EZ(N_ 1)R=0,

(14) and derived the similarity reduced {11)-dimensional a

PDE (16) by assuming none of the arbitrary functions or

constants is zero in the infinitesimal symmetri@g). Now, éN’+2N—-2R?=0, (39)

restricting f(Z)=9(T)=I1(Z)=c,=0 andc,=—1 in Eq.

(12) we obtain the similarity variables where prime denotes differentiation with respecttdqua-

tion (39) with C,=1 has been derived in a different manner

=Y, Z=T, R=R(7,0), from Eg. (36) by Monro et al. [12]. Here we have given a

group theoretical interpretation of this result equation. We

O=B(7.0)+BZ, N=N(n.0). (34 cannot construct any exact solution for Eg9).

Using this similarity transformation we rewrite Eq$%) as VIl. DISCUSSION AND CONCLUSIONS

. We carried out a detailed group theoretical analysis for the
2R,®,+RP,,=0, coupled PDEg1) and (2) describing self-writing in planar
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structures. Even though these equations are well studied, no the abovef(2), p(2), 1(2), g(T), h(T), are arbitrary
exact solutions were known. Through a Lie group analysidunctions of their arguments and the prime and dot denote
we found here a class of analytical solutions to this problendifferentiation with respect t& and T, respectively. The as-
for the first time. However, these solutions either exhibit nosociated vector fields are

evolution at all(Sec. V , or describe an evolution that does

not depend on the transverse coordingtéSecs. VA and V=Vy(f)+V,(p)+V3(g)+V4(l)+Vs(h), (A2)

V B). The latter type of solution is unlikely to be directly
associated with experimental results as they would require awhere

incident wave with infinite cross section. However, these so- "2) 4 0 £'(2)

lutions should not be dismissed for this reason as standard V,(f)= Y —+ (z)—— —R—
wave propagation can be understood using plane waves, the 2 JY 4 IR
cross section of which is also infinite. This points to further £7(2) P f7(Z)

study of the results in Secs. VA and V B: note that the pres- TYZ(@ Nf'(Z)— TYZ N’

ence of four arbitrary functions in the expressions leads to a
very large space of solutions.

We do note that our approach here is more general than Vz(p)=p(Z) +p (Z)Y +p/'(z)y
the modal ansatz of Monret al.[12], discussed in Sec. VI. Y
There the phase factor depends nandt, but not ony,
whereas in our treatment tlyedependence is also explicitly
included.

One of the main results of our analysis are the analytical
solutions discussed in Sec. V. In addition to this, however,
we have found the most general forms of the reduced Egs. V4(|):|(Z)(ﬁ)+| (Z)&_N’

(16) and (24). Though we did find analytical solutions, an-

other approach is to solve these equations numerically, sub- )

ject to suitable boundary conditions |[gf — . Though this Vs(h)=h(T) Ty (A3)
only allows one to find a subset of the solutions full Eds.

and(2), the reduced equations are much easier to solve.  The nonzero commutation relation between the vector fields

Va(@)=~(T) 1+ 2 0(T)

are
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1. Two photon case results b. Similarity variables and reduction

In this section, we discuss Lie symmetry analysis for the As discussed in Sec. Il A, solving the characteristic equa-
two-photon photosensitivity process, which is described bytion associated with the symmetriés1) one can construct
takingp=2 in Egs.(5). As the procedure is analogous to the the similarity transformations that now are
one-photon case, we report only the end results below.

n=Va(Z)Y+F(Z),

a. Lie symmetries, vector fields, and algebra

The invariance of Eqs(5) under the one-parameter Lie (= fza(Z’)dZ'—l— fTP(T’)dT’,
group of infinitesimal transformationd0) and(11) leads to
the infinitesimal symmetries

R=a™Z)PY4TYR(7,0), (A5)
t(2)
L= VP2, &), L=—o(T), ®=B+Q(2)+H(T)+ y(2) 7+ v(2) 7,
Rtz N=a(Z)N+Q"(Z)+ 7| Yi(Z)+ o ( L@
f"(Z ) A yi(Z)—2a(Z)v3(Z)]— (2) z
¢2—h(T)+|(Z)+p (2)Y+ +7 [3’2( )—2a( 7’2( )] 2 71( ),

4
where y1(2)=—(27,(2)F(2) +F'(2)/a(2)), 7:(2)=
2o (a1 —«'(D4a*(2), anda(2), P(T), H(T), F(2), andQ(2),
4 ' are five independent arbitrary real functions. These new ar-

bs=—1"(ZN+1"(Z)+p"(Z)Y+
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bitrary functions can be related to the original set of arbitraryThe vector fieldV, reflects the scale invariance of E@\7)

functions through the relationships

1
a(Z)zﬁ,

Th(T')
10 == [ e

z
F(2)= —f p(Z")a®4Z")dZ’,

Q(2)= fza(z’)|(z')dz'+%JZf"(z')FZ(z')dz'
—fzp'(z')am(z')F(z')dz'. (AB)

This similarity transformation transforms Ed5) to the sys-
tem of PDEs,

[

RA+R,®,+5RP,,=0,

D Y D2 PN —

R,yy—2R®,~RP2+2RN=0,
N,~R*=0. (A7)

We note in the similarity reduced (11)-dimensional PDE

whereas vector field¥,, V., andV, demonstrate the trans-

lational invariance of Eq(A7) in the directionsy, ¢ and ®
respectively.

Solving the characteristic equation associated with the
symmetries(A8) one gets the following similarity transfor-
mation:

R(€)

. (Can+Cyp) ~
~(2C¢-C)M*

~(2C{-Co™

. C4 (C,q—2C3Cy) .
b=pc, it ger IN@CaL=Cotd(e),
- C N
N— af (&) . (A10)
(ang_cc) (ang_cc)
Using Eq.(A10) one can rewrite EqA7) as
RO 24 2 (RD 4 SRR+ g R=0
cag C; c;
R I 2 .
RO"+2R' P’ = —(§R'+R)=0, (A11)
a

N’ + ! R4+ 2N+ Cccd—o
g Ca C — Y,

a

where the prime denotes differentiation with respecf.to

d. Particular solutions

Since Eq.(A1l) is nonintegrable we construct the solu-

there is no explicit presence of the independent variable urtions by restricting some of the parameters to zero in the

like in the one-photon case.

c. Lie symmetries and similarity reductions of Eq. (A7)

Applying the Lie algorithm again to E§A7) one obtains
the Lie symmetries
§1=Can+Cy,

£,=2Co{—C., ¢1=—C,R,

¢>,=Cyq{—Cq, ¢3=—2C,N+Cyq, (A8)
where §;’s and ¢;'s, i=1,2, j=1,2,3 are the infinitesimals
associated with the variableg ¢, R, ®, andN respectively
andC;, i=a,...,e are arbitrary constants.

The vector fields associated with the symmetries are

vV J +2¢ i R i 2N J Vv ?
a=nN— —~R——2N—, Vp=—,
an il IR N an
J d J d
Ve=—, Vg={—+—, Ve=—. (A9)
ad N oD

infinitesimal symmetrie$A8). First we takeC,=C.=0. In
this case we obtain

E=| 1(11/4(2) P1/4(T)ei(b,

a(Z)

N=1,a(2)+Q(2)~ —— (D) +11a(2)S(Z,T)
Cq , a'(Z) ,
+ C—ba(z)+71(z)+mh(z) R(Y,Z)+(y2(2)
—2a(2)y3(2))RA(Y,2), (A12)
where
Ce
CI>=I2+Q(Z)+H(T)+(yl(Z)—C—b>R(Y,Z)
+{ 1, Cg)az T)+ y2(Z)R3(Y,Z) + ﬁ+—TCdCe>
S Terd R ' 2 ' 2cC?

2 Cq Cg 3
XSH(Z,T)+ R(Y,2)S(Z,T)— —=S°(Z,T),
Cp 6C;,
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wherea(Z), P(T), H(T), F(2), Q(2), R(Y,Z)(=7), and Ce
S(Z,T)(=¢) are defined in EqA5) and (A6). P=13+ QD) +H(M +[l2+ 7(DIR(Y,2)— =~S(Z2,T)
In the second choice we restri€t,=C,=0 and obtain ¢

the following class of solution: l4

A +7(2RA(Y.2)+ 5 S(ZT),

E=| i/4a1/4(z)P1/4(T)el<IJ,

| wherea(Z), P(T), H(T), F(2), Q(2), R(Y,Z)(=7), and
B %) w(2)+Q'(2)- 12 ( ) (2) (S'ég),l'l')(=§) andl;=(C4/C,) are defined in EqgA5) and

2
( (2) We note that the solution®\12) and(A13) are similar to
+[

the one-photon case results. The electric field only depends
D+ 5 7 2a(Z) 71(2)) R(Y.Z) on the transvers¥ coordinate through its phase; the evolu-
tion of the refractive indeX therefore does not depend ®¥n
¥5(Z)—2a(Z) ¥5(2)IR*(Y,2) +1,a(2)S(Z,T), However, the refractive index in the two-photon case solu-
(A13) tions depend on the transverse coordinate quadratically and
contain five arbitrary functions compared to one-photon case
with that contains only four arbitrary functions.
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